Abstract

Vanadium flow batteries (VFBs) face a challenge with the low reaction rates of the V(II)/V(III) redox couple, which limits the performance of VFBs. Additionally, the negative electrode in VFBs is often accompanied by the persistent hydrogen evolution reaction (HER), which is difficult to eliminate. Therefore, understanding the spatial distribution of activity on the negative electrode and the HER side reaction on the electrode surface is of critical importance. This study proposes a weak measurement imaging method to characterize the spatial distribution of surface activity and HER onset potential on the negative electrode in VFBs). This method enables the visualization and in situ detection of key parameters such as the absolute values of |ipa |, |ipc |, |∆E|, |ipc /ipa |, and the HER onset potential. By comparing three different types of graphite felts with varying activity levels, it validates the feasibility of this method. Furthermore, electrochemical stability tests are conducted to study the electrodes repeatability, uniformity, and durability. This method holds promise in guiding the design of electrodes with enhanced activity, good reversibility, minimized HER side reactions, and uniform distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call