Abstract
Paramagnetic transition metals play a crucial role as cofactors in various cellular catalytic processes. However, their high concentrations in reactive oxidation states can induce oxidative stress, resulting in cell dysfunction or death. Hence, it is vital to have methods to monitor metal concentrations and paramagnetic properties in cells for medicine and cell biology. Here we present a novel multimodal method for in-cell magnetometry enabling direct measurement of metal magnetic properties within individual cells in tissue, without prior isolation and at room temperature. Individual cell magnetic moments are measured using superresolution magnetic resonance imaging (MRI) microscopy at 9.4 T by detecting microscopic magnetic-field perturbations around the cells. The cellular metal content is quantified using ion-beam microscopy or synchrotron micro-x-ray fluorescence for the same cells. The metal magnetic susceptibility at 9.4 T is then obtained from the slope of the cell magnetic moments’ dependence on cell metal content. To estimate the susceptibility at lower fields, multifield MR relaxometry and biophysical modeling are employed, extrapolating the 9.4-T susceptibility values to fields as low as 3 T. We apply the new method to determine the susceptibility of iron accumulated in human dopaminergic neurons inside neuromelanin, the by-product of dopamine synthesis. The susceptibility of iron in neuromelanin is measured to be χρ=(2.98±0.19)×10−6 m3/kg providing unique insights into the biochemistry of iron inside dopaminergic neurons. The obtained value reveals a predominant monoatomic low-affinity iron-binding site within neuromelanin, indicating a higher neurotoxicity of iron than previously suggested. Furthermore, the measured susceptibility value establishes a quantitative relationship between cellular iron concentration and iron-sensitive MRI parameters, which can be noninvasively measured . This breakthrough paves the way for the detection of dopaminergic neuron density and iron load, requiring a standard clinical MRI scanner only. It promises to facilitate early diagnosis of Parkinson’s disease. In conclusion, our presented novel method enables the direct measurements of magnetic properties of paramagnetic metals within single cells with high sensitivity and across large cell groups within a macroscopic volume, providing invaluable information about the cellular biology of metals. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.