Abstract

Real-time, in-situ ionoluminescence measurements provide information of evolution of emission bands with ion fluence, and thereby establish a correlation between point defect kinetics and phase stability. Using fast light ions (2MeV H and 3.5 He MeV) and medium mass-high energy ions (8MeV O, E=0.5MeV/amu), scintillation materials of a-SiO2, crystalline quartz, and Al2O3 are comparatively investigated at room temperature with the aim of obtaining a further insight on the structural defects induced by ion irradiation and understand the role of electronic energy loss on the damage processes. For more energetic heavy ions, the electronic energy deposition pattern offers higher rates of excitation deeper into the material and allows to evaluate the competing mechanisms between the radiative and non-radiative de-excitation processes. Irradiations with 8MeV O ions have been selected corresponding to the electronic stopping regime, where the electronic stopping power is dominant, and above the critical amorphization threshold for quartz. The usefulness of IBIL and its specific capabilities as a sensitive tool to investigate the material characterization and evaluation of radiation effects are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.