Abstract

Dentinogenesis is being used as a model for understanding the biomineralization process. The odontoblasts synthesize a structural matrix comprised of Type I collagen fibrils which define the basic architecture of the tissue. The odontoblasts also synthesize and deliver a number of dentin-specific acidic macromolecules into the extracellular compartment. These acidic macromolecules may be involved in regulating the ordered deposition of hydroxyapatite crystals within the matrix. AG1 is the first tooth-specific acidic macromolecule to have been cloned and sequenced. To identify which cells of the rat incisor pulp/odontoblast complex were responsible for synthesis of AG1, in situ hybridization was used. Digoxigenin labeled sense and anti-sense AG1 riboprobes were prepared. The AG1 mRNA was found to be expressed in the mature secretory odontoblasts. Neither pulp cells nor pre-odontoblasts showed any staining with the anti-sense probes. Chromosomal localization studies placed the AG1 gene on mouse chromosome 5q21, in tight linkage with Fgf5. AG1 has been renamed Dmp1 (dentin matrix protein 1) in accordance with present chromosomal nomenclature. Mouse 5q21 corresponds to the 4q21 locus in humans. This is the locus for the human tooth mineralization disorder dentinogenesis imperfecta Type II (DI-II). These data suggest that the Dmp1 gene is involved in mineralization and is a candidate gene for DI-II.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.