Abstract
Proteorhodopsin (PR) is a wide-spread protein found in many marine prokaryotes. PR allows for the potential conversion of solar energy to ATP, possibly assisting in cellular growth and survival during periods of high environmental stress. PR utilises either blue or green light through a single amino acid substitution. We incubated the PR-bearing bacterium Psychroflexus torquis 50 cm deep within Antarctic sea ice for 13 days, exposing cultures to diurnal fluctuations in light and temperature. Enhanced growth occurred most prominently in cultures incubated under irradiance levels of ∼50 μmol photons m-2 s-1, suggesting PR provides a strong selective advantage. In addition, cultures grown under blue light yielded over 5.5 times more live cells per photon compared to green-light incubations. Because P. torquis expresses an apparently 'green-shifted' PR gene variant, this finding infers that the spectral tuning of PR is more complex than previously thought. This study supports the theory that PR provides additional energy to bacteria under sub-optimal conditions, and raises several points of interest to be addressed by future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.