Abstract

Resistive memory technologies could be used to create intelligent systems that learn locally at the edge. However, current approaches typically use learning algorithms that cannot be reconciled with the intrinsic non-idealities of resistive memory, particularly cycle-to-cycle variability. Here, we report a machine learning scheme that exploits memristor variability to implement Markov chain Monte Carlo sampling in a fabricated array of 16,384 devices configured as a Bayesian machine learning model. We apply the approach experimentally to carry out malignant tissue recognition and heart arrhythmia detection tasks, and, using a calibrated simulator, address the cartpole reinforcement learning task. Our approach demonstrates robustness to device degradation at ten million endurance cycles, and, based on circuit and system-level simulations, the total energy required to train the models is estimated to be on the order of microjoules, which is notably lower than in complementary metal–oxide–semiconductor (CMOS)-based approaches. The non-ideal characteristics of resistive memory devices can be used to develop low-power and resilient probabilistic neuromorphic computing hardware, suitable for highly constrained edge-based applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.