Abstract
Spatiotemporal fluctuation of homogeneity and randomness of gray values within an image was explored and utilized as a label-free means for cell examination. This was done by utilizing a user-friendly combination of simple bright field microscope and Cytocapture dish, wherein cells are individually held, each within a picoliter optical chamber, forming an array of cells to be repeatedly measured over time and biomanipulated in situ at single-cell resolution. First, the measured gray level information entropy (GLIE) was used and, based on the fact that living cells are not in a state of thermodynamic equilibrium but rather in a metastable state, two fluctuation-sensitive measures were proposed and examined: ASDE—the spatial average of temporal standard deviation (SD) of GLIE, and AA—the average time autocorrelation of GLIE. System performance was validated on cell-free solutions. This was followed by examining the performance of the measures AGLIE, ASDE, and AA to distinguish among individual live-still, dead and live cells from various cell lines, as well as between cells which were and were not induced to differentiate. Results, which were obtained on four types of cells, indicate advantages of the proposed measures which are believed to be significant additions to the microscope-based probe-free toolbox.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.