Abstract

ABSTRACTUranium deposits can provide important information on the long-term performance of radioactive waste forms because uraninite (UO2+X) is similar to the UO2 in spent nuclear fuel. The Oklo-Okélobondo U-deposits, Gabon, serve as natural laboratory where the long-term (hundreds to billions of years) migration of uranium and other radionuclides can be studied over large spatial scales (nm to km). The natural fission reactors associated with the Oklo- Okélobondo U-deposits occur over a range of depths (100 to 400 m) and provide a unique opportunity to study the behavior of uraninite in near surface oxidizing environments versus more reducing conditions at depth. Previously, it has been difficult to constrain the timing of interaction between U-rich minerals and post-depositional fluids. These problems are magnified because uraninite is susceptible to alteration, it continuously self-anneals radiation damage, and because these processes are manifested at the nm to μm scale. Uranium, lead and oxygen isotopes can be used to study fluid-uraninite interaction, provided that the analyses are obtained on the micro-scale. Secondary ionization mass spectrometry (SIMS) permits in situ measurement of isotopic ratios with a spatial resolution on the scale of a few μm. Preliminary U-Pb results show that uraninite from all reactor zones are highly discordant with ages aaproaching the timing of fission chain reactions (1945±50 Ma) and resetting events at 1180±47 Ma and 898±46 Ma. Oxygen isotopic analyses show that uraninite from reactors that occur in near surface environments (δ18O= −14.4‰ to −8.5‰) have reacted more extensively with groundwater of meteoric origin relative to reactors located at greater depths (μ18O= −10.2‰ to −7.3‰). This study emphasizes the importance of using in situ high spatial resolution analysis techniques for natural analogue studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call