Abstract

Recent developments in transmission electron microscopy put high demands on specimen preparation. in general the imaging quality is not limited by the performance of the microscope but by the quality of the specimen. in order to achieve a spatial resolution of 0.1 nm in HRTEM undamaged samples with a thickness below 10 nm are required. in energy filtering analytical electron microscopy (EFTEM), a constant specimen thickness over large areas and very low contamination is needed.Conventional ion-milling techniques for TEM specimen preparation are essentially blind. Thus, it is left to chance whether the specimen detail of interest is suitable for TEM-imaging (many specimen areas are too thick). Another problem is the reaction of the specimen with the atmosphere during the transfer from the preparation stage to the microscope, which makes it very difficult to obtain the clean specimen surfaces that are needed in analytical EFTEM. Especially in high-resolution electron microscopy and electron holography the formation of amorphous oxidation and contamination layers on otherwise crystalline materials may seriously reduce the quality of high resolution images of the crystal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call