Abstract

Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells. Here, we report a comprehensive study of the interfacial degradation and ion migration at the interface between CH3NH3PbI3 perovskite layer and Ag electrode. Using in situ photoemission spectroscopy measurements, we found that the Ag electrode could induce the degradation of perovskite layers, leading to the formation of PbI2 and AgI species and the reduction of Pb2+ ions to metallic Pb species at the interface. The unconventional enhancement of the intensities of I 3d spectra provides direct experimental evidences for the migration of iodide ions from CH3NH3PbI3 subsurface to Ag electrode. Moreover, the contact of Ag electrode and perovskite layers induces an interfacial dipole of 0.3 eV at CH3NH3PbI3/Ag interfaces, which may further facilitate iodide ion diffusion, resulting in the decomposition of perovskite layers and the corrosion of Ag electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.