Abstract

This study shows direct experimental evidence of the catalytic activity of bimetallic ruthenium/manganese surfaces toward oxygen and determines how this activity impacts the thermodynamic stability of Ru/Mn-based copper diffusion barrier layers for advanced microelectronic devices. X-ray photoemission spectroscopy (XPS) analysis, as part of a fully in situ experimental procedure, showed the thermal dissociation of manganese monoxide (MnO) and the desorption of oxygen in the presence of Ru at 500 °C. This is in contrast with the thermal stability of MnO in the absence of Ru at temperatures up to 700 °C and suggests that the presence of Ru increases the catalytic activity of Mn surfaces by reducing the MnO dissociation energy and the oxygen desorption energy. XPS analysis showed no evidence of a change in the chemical composition of the Ru layer, consistent with previously proposed mechanisms for oxygen catalysis on bimetallic surfaces. Further studies investigated the impact of the presence of Ru on the ch...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.