Abstract

Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available.In this work, the X-ray diffraction (XRD) sin2ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA.XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.