Abstract

Flow cytometry and stable isotope analysis were used to determine which group of planktonic cells constitutes the main source of carbon for the Mediterranean commercial sponge, Spongia officinalis. To assess the influence of environmental conditions on sponge feeding, the particle uptake of S. officinalis was investigated in situ along a spatial gradient and at two different periods of the year near the city of Marseilles (South of France). S. officinalis efficiently retained the main picoplanktonic groups defined by flow cytometry with similar levels of efficiency. Size selectivity of particles was indicated by significantly lower retention efficiency for nanoplankton than picoplankton. Whereas picoplankton constituted the major food source of S. officinalis in terms of particle abundance, most of the carbon retained in terms of biomass originated from nanoeukaryotic cells. Thus, in spite of a higher retention rate for cyanobacteria and picoeukaryotes, nanoeukaryotes constituted the most important source of carbon for S. officinalis, which was confirmed by the high δ 13C value recorded in this species. Low δ 15N values recorded both in Marseilles and in a pristine NW Mediterranean site led to the conclusion that the stable nitrogen isotope ratio observed in this species was probably linked to its abundant endosymbiotic bacteria, and not to the assimilation of organic matter from a sewage effluent located near Marseilles. The significant increase in retention efficiency in spring compared to winter might suggest an increase in energy needs related to reproduction or growth. This study demonstrated that even though sponges are known to retain smaller particles than other filter-feeding organisms, which is an adaptive advantage in oligotrophic environments, they are also able to efficiently assimilate carbon from larger organisms, such as nanoeukaryotes, to optimize their energy intake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.