Abstract

Crystalline mannitol is commonly used as bulking agent in antibody formulations to provide structure to the lyophilized cake and prevent collapse. Depending on the lyophilization process conditions mannitol can either crystallize as α-, β-, δ-mannitol, mannitol-hemihydrate, or transition to its amorphous state. While crystalline mannitol helps to create a firmer cake structure this is not true for amorphous mannitol. The hemihydrate is also an undesired physical form as it may reduce the drug product stability by releasing bound water molecules into the cake. Our aim was to simulate lyophilization processes in an X-ray powder diffraction (XRPD) climate chamber. In the climate chamber, the process can be carried out fast with low sample quantities to determine optimal process conditions. Insights on the emergence of desired anhydrous mannitol forms helps to adjust the process parameters in larger scale freeze-dryers. In our study we have identified the critical process steps for our formulations and then varied relevant process parameters, which were the annealing temperature, annealing time and temperature ramp rate of the freeze-drying process. Furthermore, the effect of the presence of antibodies on excipient crystallization was investigated by performing the studies on placebo solutions versus two respective antibody formulations. A comparison of the products obtained in a freeze-dryer and the simulated process in the climate chamber showed good accordance demonstrating the method as suitable tool to identify ideal process conditions on a laboratory scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call