Abstract

Abstract A combination of electron channeling contrast (ECC) and electron backscatter diffraction pattern (EBSP) techniques has been used to follow in situ the migration during annealing at 323 K (50 °C) of a recrystallizing boundary through the deformed matrix of high-purity aluminum rolled to 86 pct reduction in thickness. The combination of ECC and EBSP techniques allows both detailed measurements of crystallographic orientations to be made, as well as tracking of the boundary migration with good temporal resolution. The measured boundary velocity and the local boundary morphology are analyzed based on calculations of local values for the stored energy of deformation. It is found that the migration of the investigated boundary is very complex with significant spatial and temporal variations in its movement, which cannot directly be explained by the variations in stored energies, but that these variations relate closely to local variations within the deformed microstructure ahead of the boundary, and are found related to the local spatial arrangements and misorientations of the dislocation boundaries. The results of the investigation suggest that local analysis, on the micrometer length scale, is necessary for the further understanding of recrystallization boundary migration mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.