Abstract

Soil pollution by heavy metals (HMs) has rapidly become a major threat to vegetable security. Nearly all cultivated soils are at risk of metal accumulation, and greenhouse soils are among the most heavily impacted soils. In this study, a rapid assessment of HMs at trace concentrations was conducted via portable X-ray fluorescence (PXRF) spectroscopy in Shouguang, China. Measurements were made via PXRF under in situ, ex situ and sieved conditions and by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion. The performance of each PXRF measure relative to the ICP-MS method was assessed by linear regression. Redundancy analysis was performed to quantify the proportion of explained variability between the PXRF and ICP-MS data. Evaluation of the possible sources of HMs and their potential risks was then conducted by multivariate analysis. The results showed that the PXRF data were closely correlated with ICP-MS quantification for Cu, Mn and Zn, whereas no significant correlations were found for As, Ni and Pb. The uncertainties of PXRF measurement derived from soil heterogeneity accounted for 20.02% of total variability and those from moisture and particle size accounted for 20.15%. The geo-accumulation index (Igeo) indicated that the greenhouse soils were potentially contaminated by Cu and Zn (Igeo > 0), which can be attributed to anthropogenic activities. Overall, PXRF spectroscopy is promising as a rapid and nondestructive in situ technique for assessing the potential risks of HMs at trace concentrations in greenhouse soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.