Abstract

Pillared Ti3C2Tz MXene with a large interlayer spacing (1.75 nm) is shown to be promising for high-power Li-ion batteries. Pillaring dramatically enhances the electrochemical performance, with superior capacities, rate capability, and cycling stability compared to the nonpillared material. In particular, at a high rate of 1 A g–1, the SiO2-pillared MXene has a capacity over 4.2 times that of the nonpillared material. For the first time, we apply in situ electrochemical dilatometry to study the volume changes within the MXenes during (de)lithiation. The pillared MXene has superior performance despite larger volume changes compared to the nonpillared material. These results give key fundamental insights into the behavior of Ti3C2Tz electrodes in organic Li electrolytes and demonstrate that MXene electrodes should be designed to maximize interlayer spacings and that MXenes can tolerate significant initial expansions. After 10 cycles, both MXenes show nearly reversible thickness changes after the charge–discharge process, explaining the stable long-term electrochemical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.