Abstract

Particle fragmentation influences thermochemical coal conversion processes in different ways, which is of great significance for process design and control. Different mechanisms are proposed for fragmentation characterization, but direct and substantial optical evidence supporting these theories is rarely reported. In the present study, the fragmentation process of two anthracites with low volatiles is investigated in-situ with the aid of an optical system. The observed fragmentation phenomenon confirms that the thermal stress is the main driving force for the fragmentation of the investigated anthracite particles. Together with a model analysis, a fragmentation pattern different from previous reports is proposed. The tensile stress causes the particles to fragment from the center. Fine particles are produced by multiple tensile failure rather than by the spalling of particles’ outer shell caused by compressive stress. Based on the model, the impact of various process- and particle-related factors on the maximum thermal tensile stress and its appearance time are quantitatively evaluated, which significantly reduces the required time and effort in comparison to experimental analysis of the fragmentation. This study provides direct visual evidence and numerical validation of the fragmentation mechanism, which can be utilized to predict the coal particle behavior and the resulting particle size distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call