Abstract
A previously developed laser spallation technique has been modified to measure the tensile strength of thin film interfaces in-situ at temperatures up to 1100°C. Tensile strengths of Nb/A-plane sapphire, FeCrAl/A-plane sapphire and FeCrAlY/A-plane sapphire were measured up to 950°C. The measured strengths at high temperatures were substantially lower compared with their corresponding strengths at ambient temperature. For example, at 850°C, the interface tensile strength for the Nb/sapphire (151 ± 17 MPa), FeCrAl/sapphire (62 ± 8 MPa) and FeCrAlY/sapphire (82 ± 11 MPa) interface systems were lower by factors of approximately, 3, 5, and 8, respectively, over their corresponding ambient values. These results underscore the importance of using such in-situ measured values under operating conditions as the failure criterion in any life prediction or reliability models of such coated systems where local interface temperature excursions are expected. The results on alloy film interfaces also demonstrate that the presence of Y increases the strength of FeCrAl/Al2O3 interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.