Abstract

The tumor microenvironment (TME) is characterized by low pH, hypoxia, and infiltrated tumor-associated macrophages (TAMs). Therefore, regulation of TAMs polarization into anti-tumor M1 phenotype and meanwhile alleviation of the hypoxia in TME are expected to improve anti-tumor therapeutic efficacy. To this end, a novel in situ injectable nano-complexed hydrogel was developed in this study for combining tumor therapy. Thereunto, hyaluronic acid modified transfersomes loaded with chlorogenic acid functioned to reverse M2 type into M1 type via CD44 mediated internalization, the nanomedicine was entrapped in Schiff-based crosslinked injectable hydrogel (fabricated with carboxymethyl chitosan and oxidized dextran) whose linkage was labile to the acidic TME for controlled drug release. Moreover, catalase was integrated in the hydrogel enabling to convert hydrogen peroxide in TME into dissolved oxygen and alleviate tumor hypoxia. The multifunctional nano-complexed injectable hydrogel was verified to efficiently inhibit tumor growth through synergetic effects of hypoxia alleviation and TAMs polarity regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.