Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (i.e., total AChE) in human blood are biomarkers for theranostic monitoring of organophosphate neurotoxin-poisoned patients. We developed an ultra-sensitive method to detect the total AChE activity in sub-microliter human whole blood based on in situ induced metal-enhanced fluorescence (MEF). Both AChE and BChE can catalyze the hydrolysis of the acetylthiocholine (ATCh) substrate and produce positively-charged thiocholine (TCh). TCh can reverse the negatively-charged surface of core–shell Ag@SiO2 nanoparticles (NPs). The negatively-charged fluorescent dye (8-hydroxypyrene-1,3,6-trisulfonic acid, HPTS) is then confined to the surface of Ag@SiO2 NPs and generates an enhanced fluorescence signal in situ. Changes in the surface charge of Ag@SiO2 NPs are monitored by Zeta potential, and the MEF effect is confirmed by the measurements of fluorescence time decay. AChE activity has a dynamic range of 0U/mL to 0.005U/mL and a detection limit of 0.05mU/mL. The total AChE activity in the sub-microliter human whole blood could be determined; the results were further validated. Therefore, combining the AChE catalytic reaction with MEF provides a simple, ultra-sensitive, and cost-effective “in situ MEF” approach to determine the total AChE activity in human whole blood sample down to sub-microliters without matrix interferences. The strategy also allows potential usage in other tissues and other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.