Abstract

Rationally tailoring a controlled spatial organization of enzymes in a nanoarchitecture for multi-enzyme cascade reactions can enhance the catalytic efficiency via substrate channeling. However, attaining substrate channeling is a grand challenge, requiring sophisticated techniques. Herein, we report facile polymer-directed metal-organic framework (MOF)-based nanoarchitechtonics for realizing a desirable enzyme architecture with significantly enhanced substrate channeling. The new method involves the use of poly(acrylamide-co-diallyldimethylammonium chloride) (PADD) as a modulator in a one-step process for simultaneous MOF synthesis and co-immobilization of enzymes (GOx and HRP). The resultant enzymes-PADD@MOFs constructs showed a closely packed nanoarchitecture with enhanced substrate channeling. A transient time close to 0 s was observed, owing to a short diffusion path for substrates in a 2D spindle-shaped structure and their direct transfer from one enzyme to another. This enzyme cascade reaction system showed a 3.5-fold increase in catalytic activity in comparison to free enzymes. The findings provide a new insight into using polymer-directed MOF-based enzyme nanoarchitectures to improve catalytic efficiency and selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call