Abstract

Although IL-12/23p40 is known to play a major role in host resistance to Mycobacterium spp, the cellular source, tissue localization, and regulation of p40 production during mycobacterial infection in vivo has been unclear. In this study, we used IL-12/23p40eYFP (yet40) reporter mice to track expression of the cytokine following Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. We found that in spleens of these mice, p40 production is initiated by a transient burst from CD11b(low)CD11c(+) dendritic cells (DC) which are later replaced at the onset of granuloma formation by CD11b(high)CD11c(+) DC as the major source of the cytokine. The latter subset was also found to be the key producer of DC-derived p40 in nonlymphoid tissue and in both spleen and liver optimal production of the cytokine was regulated by endogenous TNF-alpha. Although BCG and p40-expressing DC were both observed in splenic white pulp, p40(+) DC rarely colocalized with bacilli. Indeed, in vitro flow cytometry and confocal microscopy indicated that the presence of intracellular bacteria is not required for p40 production by DC and Transwell experiments confirmed that soluble mycobacterial components are sufficient for inducing cytokine expression by these cells. Moreover, when stimulated with LPS, DC directly infected with BCG showed impaired IL-12p40 production in vitro. Together, our findings establish CD11b(high) DC as a major source of IL-12/23p40 during mycobacterial infection in situ and implicate both soluble mycobacterial products and TNF-alpha in stimulating sustained production of p40 by these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call