Abstract

ABSTRACT Knowledge about the optical features of benthic objects is essential for quantifying spectral signatures, remote sensing-based mapping, and ecological monitoring in coral reefs. However, the spectral identification of benthic species and the accurate measurement of the in situ reflectance spectra of relevant research objects remain underexplored. An underwater radiation measuring system suitable for coral reef environments was specifically designed to obtain in situ reflectance spectra and match benthic photographs of various substrate targets. This instrument has the advantages of obtaining hyperspectral, dual-channel simultaneous measurements, and automatically adjusting the integration time according to the light intensity. Based on in situ hyperspectral datasets, the linear discriminant analysis (LDA) was used for exploring and discriminating spectral characteristics from three taxonomic ranks, which include typical substrates of six community groups, nine coral families, and six Acroporidae species. In situ full-resolution (1-nm) spectra provided the best discrimination ability with mean accuracies of 97.5%, 90.9%, and 91.6% for typical substrates, coral families, and coral species, respectively. The spectral abilities of remote sensors were assessed by applying the spectral response functions of three multispectral sensors (Landsat 8 OLI, Sentinel-2A, and World View-2) to the full-resolution spectra. Discrimination analyses of the simulated spectra demonstrated that the spectral separations of typical substrates might be apparent, with overall classification accuracies of 89.6%, 88.2%, and 90.4% for the Landsat 8 OLI, Sentinel-2A, and World View-2 sensors, respectively. The spectral separation for different corals, however, may not be effective when using multispectral sensors. The discrimination analyses of families and species produced overall classification accuracies of 67.1% and 69.6%, respectively, for the Landsat 8 OLI, 56.0% and 56.0% for the Sentinel-2A sensor, and 64.5% and 61.8% for the World View-2 sensor. In summary, this method has the potential for identifing substrate targets in communities and taxonomic coral groups by applying in situ hyperspectral datasets. Furthermore, multispectral satellite sensors are currently inadequate for spectrally separate corals, while spectral discrimination is possible and practical for different substrate targets with visual spectral differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.