Abstract

Highly efficient visible-light-driven heterogeneous photocatalyst Ag3PO4/g-C3N4 with different weight ratios from Ag3PO4 to g-C3N4 were synthesized by a facile in situ hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FTIR), photoluminescence spectra (PL), UV–vis diffuse reflectance spectra (UV-Vis), and electrochemical impedance spectra (EIS). Under visible light irradiation, Ag3PO4/g-C3N4 showed very excellent photocatalytic activity for sulfapyridine (SP) which is one of the widely used sulfonamide antibiotics. When the ratio from Ag3PO4 to g-C3N4 was 1:2, the degradation rate of SP at 120 min was found to be 94.1%, which was superior to that of pure Ag3PO4 and pure g-C3N4. Based on the experimental results, the possible enhanced photocatalytic mechanism of Ag3PO4/g-C3N4 was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call