Abstract

Type X collagen is a short, non-fibril-forming collagen restricted to the hypertrophic, calcifying zone of growth plate cartilage. It is developmentally regulated and found exclusively in hypertrophic cartilage. Here we report on the structure and distribution of human type X collagen based on the cloning of a PCR fragment covering 292 bp of the carboxyterminal, non-triple-helical domain. Seventy-five percent of the sequence are identical to that of chicken type X collagen at nucleic acid level and 84% at amino acid level. This probe was used for in situ hybridization analyses of type X collagen expression in a human growth plate. Human fetal cartilage, which is different from the avian cartilage-bone transition zone, showed strong type X collagen expression confined to the lower hypertrophic zone of the growth plate. The upper zone of hypertrophic chondrocytes did not contain α1(X) transcripts, indicating that type X collagen expression follows cellular hypertrophy. The distribution of type X collagen mRNA has been previously unreported in chondrocytes from zones of secondary ossification and in chondrocytes associated with endochondral bone trabecules containing calcified cartilage. In situ hybridization analyses with probes for type I and II collagen on consecutive sections indicated a spatial gradient in chondrocyte differentiation in the human epiphysis. Chondrocytes of low type II collagen expression in the resting zone are followed by proliferating columnar chondrocytes with strong type II collagen expression and a zone of hypertrophic chondrocytes synthesizing type X and type II collagen. In contrast to findings in avian growth cartilage in some of our samples of human epiphyseal cartilage hypertrophic chondrocytes continued to strongly express type II collagen down to the chondro-osseous junction. Transcripts of the α2(I) collagen gene, however, were detected only in perichondrium, vascular cavities, and bone, but not in hypertrophic or any other chondrocytes. The above observations demonstrate that the isolation of the human type X collagen DNA will contribute to studies of pathways of chondrocyte differentiation in the mammalian growth plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call