Abstract
The most important commercial coffee species, Coffea arabica, which is cultivated in about 70% of the plantations world-wide, is the only tetraploid (2n=4x=44) species known in the genus. Genomic in situ hybridization (GISH) and fluorescent in situ hybridization (FISH) were used to study the genome organization and evolution of this species. Labelled total genomic DNA from diploid species (C. eugenioides, C. congensis, C. canephora, C. liberica) closely related to C. arabica was separately used as a probe in combination with or without blocking DNA to the chromosome spreads of C. arabica. GISH discriminated between chromosomes of C. arabica only in the presence of an excess of unlabelled block DNA from the species not used as a probe. Among the range of different species combinations used, DNA from C. eugenioides strongly and preferentially labelled 22 chromosomes of the tetraploid C. arabica, while the remaining 22 chromosomes were labelled with C. congensis DNA. The similarity of observations between C. arabica and the two diploid species using two ribosomal genes with FISH with respect to metaphase chromosomes provided additional support to the GISH results. These results confirm the allopolyploid nature of C. arabica and show that C. congensis and C. eugenioides are the diploid progenitors of C. arabica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.