Abstract

We have applied in situ high-resolution electron microscopy (HREM) to the study of interface reactions, particularly in metal-semiconductor systems. There is contrasting behavior whether or not the manufactured interface undergoes a chemical reaction. The in situ technique allows determination of the reaction mechanisms on an atomic scale.Reactive interfaces are characterized by systems in which new chemical compounds are formed (e.g., silicides for metal-silicon interfaces, metal gallides and arsenides for GaAs, etc.). We found that the equilibrium phase formation is often preceded by a solid-state amorphization reaction. In situ observations allow very precise measurement of the reaction rate in a sufficient temperature range to confirm that this process is diffusion controlled. Crystallization of the amorphous material can be followed as well as the development of any crystallographic orientation relationships. A ledge growth mechanism can easily be distinguished from a random process.It might be expected that non-reactive interfaces are stable upon heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call