Abstract

The intra-crystalline cation partitioning over T- and M-sites in a synthetic Mg(Fe,Al)2O4 spinel sample has been determined as a function of temperature by Rietveld structure refinements from powder diffraction data, combining in situ high-temperature neutron powder diffraction (NPD; POLARIS diffractometer, at ISIS, Rutherford Appleton Laboratory, UK), to determine the Mg and Al occupancy factors, with in situ high-temperature X-ray powder diffraction, to fix the Fe3+ distribution. The results obtained agree with a two-stage reaction, in which an initial exchange between Fe3+ and Mg, the former leaving and the latter entering tetrahedral sites, is successively followed by a rearrangement involving also Al. The measured cation distribution has then been compared and discussed with that calculated by the Maximum Configuration Entropy principle, for which only NPD patterns have been used. The cation partitioning has finally been interpreted in the light of the configuration model of O’Neill and Navrotsky.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.