Abstract

Developing high surface area catalysts is an effective strategy to enhance the oxygen reduction reaction (ORR) in the application of microbial fuel cells (MFCs). This can be achieved by developing a catalyst based on metal-organic frameworks (MOFs) because they offer a porous active site for ORR. In this work, a novel in situ growth of 2D shell nanowires of ZIF-67 as a template for N-doped carbon (Co/NC) via a carbonization route was developed to enhance the ORR performance. The effects of different reaction times and different annealing temperatures were studied for a better ORR activity. The growth of the MOF template on the carbon cloth was confirmed using scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared. The Co/NC-800 exhibited an enhancement in the ORR activity as evidenced by an onset potential and half-wave potential of 0.0 vs V Ag/AgCl and -0.1 vs V Ag/AgCl, respectively, with a limited current density exceeding the commercial Pt/C. Operating Co/NC-800 on MFC revealed a maximum power density of 30 ± 2.5 mW/m2, a maximum current density of 180 ± 2.5 mA/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.