Abstract

AbstractExperiments using a transmission electron microscope decomposed zirconium acetylacetonate with an electron beam, forming zirconium nanoparticles on graphene. Continued electron irradiation transformed these nanoparticles into atomically thick zirconium islets (zirconene islets) within the graphene lattice. The electron beam caused zirconium atom dislocations and vacancies that are rapidly refilled, a process repeating until the vacancies evolved into zirconium nanoribbons before breaking. This study offers insights into the electron‐driven growth and degradation of zirconene islets, showcasing a method to fabricate freestanding zirconenes for use as atomically thin coatings in extreme environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.