Abstract

Preconcentration can effectively enhance the detection performance of electrodes in the electrochemical detection of heavy metal ions, but it also presents challenges for real-time monitoring. Several attempts have been made to optimize preconcentration by improving the adsorption capacity or detection mechanism of the electrode. The valence transfer of tungsten oxide between W5+/W6+ can participate in the reduction between the electrode material and heavy metal ions, playing a role in preconcentration to some extent. Therefore, we developed a WO3/SSM electrochemical sensor for the detection of Cu(II) that utilizes the valence variation property of WO3. The crystallinity and microstructure of the WO3/SSM electrode can be regulated by controlling the deposition parameters, and we prepared three types of WO3/SSM with different morphologies to identify the influence of the electrochemical effective surface area. The proposed electrode shows high performance as a Cu(II) sensor under short preconcentration time (60 s), with an excellent sensitivity of 14.113 μA μM−1 cm−2 for 0.1–10.0 μM and 4.7356 μA μM−1 cm−2 for 10.0–20.0 μM. Overall, the combined effect of morphology and valence transfers shortens the preconcentration time and optimizes preconcentration while ensuring excellent electrode performance. This WO3/SSM electrode is expected to drive great advances in the application of tungsten oxide in the electrochemical detection of heavy metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.