Abstract

Herein, polyphosphazene nanoparticle (PPN) functionalized MoS2 nanosheets have been successfully fabricated through a novel two-step method, involving a simple ball milling of bulk MoS2 powders to acquire exfoliated MoS2 nanolayer, followed by high temperature polymerization to achieve MoS2@PPN nanohybrids. The incorporation of P and N atoms could efficiently reduce the stacking of MoS2 nanolayers and form large number of active sites. It is noted that introducing well-characterized MoS2@PPN nanohybrids significantly improve the flame retardancy of epoxy resin (EP), i.e., 30.7% and 23.6% reductions in peak heat release rate and total heat release, respectively. The friction coefficients testing results reveal that the EP/MoS2@PPN1.0 composite exhibits the lowest friction coefficient value and volume wear rate. The excellent properties of these EP composites result from synergetic coupled effect between PPN and MoS2 ultrathin nanosheets, as well as improved interface interaction between MoS2@PPN and EP matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.