Abstract

Sensitive and accurate detection technology for pathogenic bacteria is of great social and economic significance in foodborne disease and food safety. In this paper, a novel portable electrochemical DNA biosensor for the detection of specific DNA sequence of Escherichia coli (E. coli) O157: H7 was constructed. To enhance the performance of the electrochemical sensor, a functionalized nitrogen-doped carbonized polymer dots in-situ grown on few-layer black phosphorus (N-CPDs@FLBP) was synthesized and used as the modifier on the surface of screen-printed electrode. Combining gold nanoparticles as immobilization matrix and methylene blue as electrochemical indicator, the analytical performance of this electrochemical DNA biosensor was evaluated using standard complementary ssDNA sequence in the linear concentration range from 1.0 × 10−19 to 1.0 × 10−6 mol/L with a low detection limit as 3.33 × 10−20 mol/L (3 σ). Furthermore, the portable electrochemical DNA biosensor was proposed based on polymerase chain reaction amplification for the detection of the E. coli O157: H7 genomic DNA from chicken meat, which verified the feasibility for practical samples detection. The research has great theoretical and practical significance for the development of electrochemical biosensor of pathogenic bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.