Abstract

N-doped carbon nanotubes (NCNTs) are promising metal-free heterogeneous catalysts toward peroxymonosulfate (PMS) activation in advanced oxidation processes for wastewater remediation. However, conventional CNTs always suffer from serious agglomeration and low N content, which renders their design synthesis as an important topic in the related field. With hierarchical Ni@C microspheres as a nutritious platform, we have successfully induced in situ growth of NCNTs on their surface by feeding melamine under high-temperature inert atmospheres. These as-grown NCNTs with a small diameter (ca. 20 nm) are firmly rooted in Ni@C microspheres and present loose accumulation on their surface, and their relative content can be tailored easily by manipulating the mass ratio of melamine to Ni@C microspheres. The investigation on bisphenol A (BPA) removal reveals that the loading amount of NCNTs affects the catalytic performance greatly, and the optimum ratio of melamine to Ni@C microspheres is 5.0 because the corresponding MNC-5.0 possesses sufficient surface N sites and moderate electron transfer, resulting in powerful PMS activation and sufficient utilization of reactive oxidative species (ROS). MNC-5.0 also addresses its advantages as compared with other NCNTs from post treatment and spontaneous growth strategies. The primary ROS responsible for BPA degradation are identified as hydroxyl radical, sulfate radical, superoxide radical, and singlet oxygen through quenching experiments and electron paramagnetic resonance, and the corresponding catalytic mechanism is also put forward based on these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call