Abstract

Developing low-cost catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with superior performance in an alkaline solution is of significance for large-scale applications in aqueous zinc-air batteries (ZABs). Herein, we describe the in situ design of embedded NiFe nanoparticles into the N-doped bamboo-like carbon nanotube (NBCNT) with high catalytic performance and stability. The obtained NiFe@NBCNT hybrid exhibits a high electrochemical activity and stability with an unexpectedly low overpotential of ∼195 mV for OER at 10 mA cm-2 and an onset potential at 1.03 V for ORR, superior to the state-of-the-art Pt/C and RuO2 catalysts. Additionally, compared to the mixture of Pt/C and RuO2 cathodes, the ZAB based on the NiFe@NBCNT cathode displays a lower overpotential (0.80 V), higher stable round-trip efficiency (58.3%), and improved power density for 200 cycles at 10 mA cm-2. Apparently, the obtained results indicate that the NiFe@NBCNT hybrid is proven to be one of the best nonnoble metal catalysts for achieving commercial implementation of rechargeable ZABs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.