Abstract

Metal organic frameworks (MOFs) are a kind of porous coordination polymer supported by organic ligands with metal ions as connection points. They have a controlled structure and porosity and a significant specific surface area, and can be used as functional linkers or sacrificial templates. However, long diffusion pathways, low conductivity, low cycling stability, and the presence of few exposed active sites limit the direct application of MOFs in energy storage applications. The targeted design of MOFs has the potential to overcome these limitations. This study proposes a facile method to grow and immobilize MOFs on layered double hydroxides through an in situ design. The proposed method imparts not only enhanced conductivity and cycling stability, but also provides additional active sites with excellent specific capacitance properties due to the interconnectivity of MOF nanoparticles and layered double hydroxide (LDH) nanosheets. Due to this favorable heterojunction hook, the NiMo-LDH@NiCo-MOF composite exhibits a large specific capacitance of 1536 F·g-1 at 1 A·g-1. In addition, the assembled NiMo-LDH@NiCo-MOF//AC asymmetric supercapacitor can achieve a high-energy density value of 60.2 Wh·kg-1 at a power density of 797 W·kg-1, indicating promising applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call