Abstract

Degradation of formaldehyde (HCHO) in interior decoration has been an urgent issue due to its toxicity nature and potential threats to human health. In this work, manganese dioxide nanoparticles (MnO2 NPs) were in situ grown on the polydopamine (pDA)-templated cotton fabrics for environmentally friendly HCHO degradation applications. The morphology, elemental composition, and crystal structure of the cotton/pDA/MnO2 were characterized by scanning electron microscopy–energy dispersive X-ray spectrum, Fourier transform infrared, X-ray diffractometer and X-ray photoelectron spectroscopy, respectively. The degradation of HCHO by the as-developed cotton/pDA/MnO2 was measured in a self-made quartz reactor, and the stability of adsorption was evaluated by cyclic experiments. The results showed that the HCHO removal efficiency reached to 100% within 20 min after three cycles, suggesting that the as-prepared fabrics exhibited good stability for the degradation of HCHO. The development of MnO2 NPs coated fabrics provides new strategies in degradation HCHO in interior decoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call