Abstract
In this paper, we report a novel matchlike zinc oxide (ZnO)/gold (Au) heterostructure with plasmonic-enhanced photoelectrochemical (PEC) activity for solar hydrogen production. The matchlike heterostructure with Au nanoparticles coated on the tip of ZnO nanorods is in situ grown on a zinc (Zn) substrate by using a facile hydrothermal and photoreduction combined approach. This unique heterostructure exhibits plasmonic-enhanced light absorption, efficient charge separation and transportation properties with tunable Au contents. The photocurrent density of the matchlike ZnO/Au heterostructure reaches 9.11 mA/cm(2) at an applied potential of 1.0 V (vs Ag/AgCl) with an Au/Zn atomic ratio of 0.039, which is much higher than that of the pristine ZnO nanorod array (0.33 mA/cm(2)). Moreover, the solar-to-hydrogen conversion efficiency of this special heterostructure can reach 0.48%, 16 times higher than that of the pristine ZnO nanorod array (0.03%). What is more, the efficiency could be further improved by optimizing the Au content of the heterostructure. The formation mechanism of such a unique heterostructure is proposed to explain the plasmonic-enhanced PEC performance. This study might contribute to the rational design of the visible-light-responsive plasmonic semiconductor/metal heterostructure photoanode to harvest the solar spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.