Abstract

Fe–Ni nanoparticle–decorated LaSr(Fe,Mo)O4 Ruddlesden–Popper (R–P) perovskite anodes, named R–LSFMNx, were prepared in situ by reducing perovskites La0.5Sr0.5Fe0.9Mo0.1–xNixO3–δ (LSFMNx; x = 0.03–0.07) under SOFC anode operating conditions. Electrolyte–supported single cells with a configuration of R–LSFMNx|La0.9Sr0.1Ga0.8Mg0.2O3–δ (LSGM)|Ba0.5Sr0.5Co0.9Nb0.1O3–δ were used to evaluate the electrochemical performances and redox/long–term stability of the R–LSFMNx anodes fuelled by H2, CO, and simulated syngases (x% H2/CO; x = 50–10). EIS analyses indicated that the increased Ni level in the exsolved Fe–Ni nanocatalysts significantly promotes fuel diffusion/adsorption/dissociation, which plays a rate–limiting role in the anode fuel oxidation. Furthermore, the incremental Ni in Fe–Ni alloy also enhances the anode redox/long–term stability and carbon resistance/tolerance, and the R–LSFMN0.07 anode, i.e., Ni level in Fe–Ni alloy attaining ∼14 mol.%, displays the optimal stability and carbon resistance/tolerance. Finally, the potential of the R–LSFMN0.07 anode for direct utilization of syngas was demonstrated by the characterization of the electrochemical performance and stability based on the R–LSFMN0.07 anode cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.