Abstract

AbstractBinary compound antimony sulfide (Sb2S3) with its nontoxic and earth‐abundant constituents, is a promising light‐harvesting material for stable and high efficiency thin film photovoltaics. The intrinsic quasi‐1D (Q1D) crystal structure of Sb2S3 is known to transfer photogenerated carriers rapidly along the [hk1] orientation. However, producing Sb2S3 devices with precise control of [hk1] orientation is challenging and unfavorable crystal orientations of Sb2S3 result in severe interface and bulk recombination losses. Herein, in situ vertical growth of Sb2S3 on top of ultrathin TiO2/CdS as the electron transport layer (ETL) by a solution method is demonstrated. The planar heterojunction solar cell using [hk1]‐oriented Sb2S3 achieves a power conversion efficiency of 6.4%, performing at almost 20% higher than devices based on a [hk0]‐oriented absorber. This work opens up new prospects for pursuing high‐performance Sb2S3 thin film solar cells by tailoring the crystal orientation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call