Abstract

Herein, a novel method is presented for the in situ growth of gold nanofilms with branched structures in the presence of organosulfur. The key feature in this approach is the Rayleigh instability of ultrathin gold nanowires (AuNWs) without oleylamine (OAm), which allows the ultrathin AuNWs to decompose into gold nanoparticles (AuNPs) and the AuNPs to in situ grow into branched structures for high-performance stability and electrical conductivity. The sheet resistance of the gold nanofilms initially sharply decreased, whereas it subsequently slightly increased with the concentration of CS(NH2)2 until it exceeded the optimal range. After undergoing a 10 min heat treatment at 150 °C, the sheet resistance of the nanofilms was further reduced to 18 Ω/sq, which could be maintained for more than five months. The internal structure becomes fully grown and denser, forming a branched structure after heat treatment. Only certain organosulfurs can improve the electrical properties of the gold nanofilms, and the mechanism of organosulfur in the in situ growth of gold nanofilms with branched structures has also been presented. Overall, this novel method provides a straightforward and convenient approach to obtaining gold nanomaterials with branched structures, holding great potential promise for applications in flexible electronics, catalysis, and energy fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.