Abstract

Metal sulfides are promising anodes for potassium-ion batteries (PIBs) due to their high theoretical capacity and abundant active sites; however, their intrinsic low conductivity and poor cycling stability hampered their practical applications. Given this, the rational design of hybrid structures with high stability and fast charge transfer is a critical approach. Herein, CoS2/ZnS@rGO hybrid nanocomposites were demonstrated with stable cubic phases. The synergistic effect of the obtained bimetallic sulfide nanoparticles and highly conductive 2D rGO nanosheets facilitated excellent long-term cyclability for potassium ion storage. Such hybrid nanocomposites delivered remarkable ultrastable cycling performances in PIBs of 159, 106, and 80 mA h g-1 at 1, 1.5, and 2 A g-1 after 1800, 2100, and 3000 cycles, respectively. Moreover, the full-cell configuration with a perylene tetracarboxylic dianhydride organic cathode (CoS2/ZnS@rGO∥PTCDA) exhibited a better electrochemical performance. Besides, when the CoS2/ZnS@rGO nanocomposites were applied as an anode for sodium-ion batteries, the electrode demonstrated a reversible charge capacity of 259 mA h g-1 after 600 cycles at 2 A g-1. In situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterizations further confirmed the conversion reactions of CoS2/ZnS during insertion/desertion processes. Our synthesis strategy is also a general route to other bimetallic sulfide hybrid nanocomposites. This strategy opens up a new roadmap for exploring hybrid nanocomposites with feasible phase engineering for achieving excellent electrochemical performances in energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.