Abstract

A funky electrochemical sensor for xanthine catching was proposed by growing CoFe-Prussian blue analogs (CoFe-PBA) in situ on ferrocene functionalized Ti3C2Tx MXene (Fc-Ti3C2Tx), denoted as CoFe-PBA/Fc-Ti3C2Tx. In this sensor, introduction of unique thin-layer structure Ti3C2Tx MXene as the interlayer spacers to accommodate ferrocene and CoFe-PBA prevented the restacking of MXene and CoFe-PBA, meanwhile gained higher conductivity. The CoFe-PBA/Fc-Ti3C2Tx was observed by SEM and TEM to possess abundant heteroatom-functionalized multiple-layers structure, and it was therefore endowed with a faster electron transfer rate and a greater electrochemically active surface area. Furthermore, the sensor was investigated using differential pulse voltammetr (DPV) and superiorelectrochemical sensing performance for xanthine detection was achieved with rather wide linear range (3 × 10−8 to 1.007 × 10−3 M), a remarkably low detection limit (0.002 μM), and superior stability. The recovery rate of real sample analysis was acceptable, demonstrating the viability of using this electrochemical sensor in real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.