Abstract

The ecological study of corals in their habitat is essential to determine the effects of global change and to develop strategies for reef conservation. Based on mark and recovery experiments, we investigated skeletal growth patterns of two reef-building cold-water coral species, Lophelia pertusa and Madrepora oculata, in the Lacaze-Duthiers canyon in the northwestern Mediterranean Sea. Coral fragments were collected, stained and deployed for short-term (2.5 months) and long-term (15 months) growth experiments at two sites located 4.5km and 6.8km from the canyon head. The analysis of distinct growth parameters (budding, new polyp growth and linear extension of the coral fragments) revealed that growth patterns are consistent among branches of different sizes, but discrepancies arose from the different types of staining used. Calcein appeared more suitable than alizarin red, which strongly limited growth by delaying coral recovery, for short-term experiments at least. Both species grew rapidly when redeployed in their habitat. Effects of long-term experiments could not be observed because corals were exposed to harmful environmental stress, particularly the lethal effect of sedimentation on the fragments. Despite limited in situ deployment, the growth analysis from the short-term experiment highlighted species-specific responses according to the location along a longitudinal gradient in the canyon and were likely related to the local environmental conditions. Consistent with the observed species distributions, M. oculata showed optimal growth at the site closer to the canyon head compared with L. pertusa, which had optimal growth at the deeper site.In situ experiments are difficult to conduct in deep-sea ecosystems, but with the use of remotely operated vehicles (ROVs), such a simple approach may be of interest to managers of cold-water coral ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.