Abstract

The majority of efficient photocatalysts are powder-like, making recycling difficult. In this work, carbon cloth (CC) was used as the substrate, two MOF cloth composites MIL-88@CC and MIL-100@CC were prepared at room temperature, and the morphology and structure of MOF cloth composites were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared-attenuated total reflectance (FTIR), X-ray photoelectron spectroscopy (XPS). The results of photocatalytic degradation tests show that the two heat-treated MOF cloth composites have excellent degradation effects on MB. The two MOF cloth composites can degrade above 97 % of MB (20 mg/L) within 30 min under the irradiation of 250 W high-pressure mercury lamp and stirring, far exceeding the raw MOF cloth. The presence of oxygen vacancy defects is thought to have improved the heat-treated MOF cloth's photocatalytic efficiency by upsetting the symmetry of the material and facilitating electron and hole separation.·OH and·O2- were found to be the main reactive oxygen species (ROS) involved in the degradation process, according to quenching studies and electron spin resonance (ESR) research. In addition, the macroscale MIL-88@CC and MIL-100@CC have considerable potential for degrading dyes, which presents a practical solution to sustainable development concerns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call