Abstract
Coral reef resilience depends on the balance between carbonate precipitation, leading to reef growth, and carbonate degradation, for example, through bioerosion. Changes in environmental conditions are likely to affect the two processes differently, thereby shifting the balance between reef growth and degradation. In cold-water corals estimates of accretion-erosion processes in their natural habitat are scarce and solely live coral growth rates were studied with regard to future environmental changes in the laboratory so far, limiting our ability to assess the potential of cold-water coral reef ecosystems to cope with environmental changes. In the present study, growth rates of the two predominant colour morphotypes of live Lophelia pertusa as well as bioerosion rates of dead coral framework were assessed in different environmental settings in Norwegian cold-water coral reefs in a 1-year in situ experiment. Net growth (in weight gain and linear extension) of live L. pertusa was in the lower range of previous estimates and did not significantly differ between inshore (fjord) and offshore (open shelf) habitats. However, slightly higher net growth rates were obtained inshore. Bioerosion rates were significantly higher on-reef in the fjord compared to off-reef deployments in- and offshore. Besides, on-reef coral fragments yielded a broader range of individual growth and bioerosion rates, indicating higher turnover in live reef structures than off-reef with regard to accretion–bioerosion processes. Moreover, if the higher variation in growth rates represents a greater variance in (genetic) adaptations to natural environmental variability in the fjord, inshore reefs could possibly benefit under future ocean change compared to offshore reefs. Although not significantly different due to high variances between replicates, growth rates of orange branches were consistently higher at all sites, while mortality was statistically significantly lower, potentially indicating higher stress-resistance than the less pigmented white phenotype. Comparing the here measured rates of net accretion of live corals (regardless of colour morphotype) with net erosion of dead coral framework gives a first estimate of the dimensions of both processes in natural cold-water coral habitats, indicating that calcium carbonate loss through bioerosion amounts to one fifth to one sixth of the production rates by coral calcification (disregarding accretion processes of other organisms and proportion of live and dead coral framework in a reef). With regard to likely accelerating bioerosion and diminishing growth rates of corals under ocean acidification, the balance of reef accretion and degradation may be shifted towards higher biogenic dissolution in the future.
Highlights
Cold-water corals are important carbonate factories in the upper bathyal realm, which can build large reefs on continental shelves and slopes
Size, and polyp number correlated well (R2 ranging from 0.616 to 0.999). In this in situ study, net growth- as well as bioerosion rates from environmentally contrasting cold-water coral ecosystems were obtained in a 1 year experiment in a Norwegian fjord and open shelf coral reef environment in the Northeast Atlantic using complementing established standard methods
Together with the observed trend towards higher growth rates of orange corals in situ, the results of the present study suggest that the orange colourmorph is more resilient in the inshore reef at Nord-Leksa
Summary
Cold-water corals are important carbonate factories in the upper bathyal realm, which can build large reefs on continental shelves and slopes. Mean Holocene carbonate accumulation accounts to 103 g cm−2 kyr−1 in Norwegian cold-water coral reefs in the North Atlantic, therewith representing significant carbonate sinks on a local and potentially even global scale (Lindberg & Mienert, 2005; Titschack et al, 2015) They are among the most prominent ecosystem engineers on Earth, hosting more than 2,700 species associated to cold-water coral reefs around the world, using them as nursery grounds or feeding places (Freiwald et al, 2004; Roberts & Cairns, 2014). L. pertusa inhabits temperatures between 4 to 13.9 C and salinities from 32 to 38.8 (Freiwald et al, 2004, 2009)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.