Abstract

Development of stable and efficient non-noble metal based electrocatalysts for oxygen evolution reaction (OER) in acidic media is of great importance for proton exchange membrane based water electrolysis, which is indispensable for green hydrogen production. Herein, iron-doped, carbon-coated Co3O4 nanocomposite derived from a cobalt metal-organic framework, is grown in-situ on fluorine-doped tin oxide (FTO) glass (Fe-Co3O4@C/FTO) as an efficient and a stable binder-free electrode for acidic OER. Fe doping enhances both catalytic efficiency and stability of carbon coated Co3O4 toward acidic OER, through inducing small primary particle sizes and suitably modulated electronic structure of Co3O4, and better catalyst/substrate adhesion. Fe-Co3O4@C/FTO exhibits impressive electrocatalytic performances in 0.5 M H2SO4, with a low overpotential of 396 mV at 10 mA cm−2 and a small Tafel slope of 68.6 mV dec−1. Its electrochemical performances remain stable for over 50 h at 10 mA cm−2, making it a promising non-noble metal based electrocatalyst for acidic OER.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call