Abstract

High-quality epitaxial Ge layers for GaAs/Ge/GaAs heterostructures were grown in situ in an arsenic-free environment on (100) off-oriented GaAs substrates using two separate molecular beam epitaxy (MBE) chambers, connected via vacuum transfer chamber. The structural, morphological, and band offset properties of these heterostructures are investigated. Reflection high energy electron diffraction studies exhibited (2 × 2) Ge surface reconstruction after the growth at 450 °C and also revealed a smooth surface for the growth of GaAs on Ge. High-resolution triple crystal x-ray rocking curve demonstrated high-quality Ge epilayer as well as GaAs/Ge/(001)GaAs heterostructures by observing Pendellösung oscillations and that the Ge epilayer is pseudomorphic. Atomic force microscopy reveals smooth and uniform morphology with surface roughness of ∼0.45 nm and room temperature photoluminescence spectroscopy exhibited direct bandgap emission at 1583 nm. Dynamic secondary ion mass spectrometry depth profiles of Ga, As, and Ge display a low value of Ga, As, and Ge intermixing at the Ge/GaAs interface and a transition between Ge/GaAs of less than 15 nm. The valence band offset at the upper GaAs/Ge-(2 × 2) and bottom Ge/(001)GaAs-(2 × 4) heterointerface of GaAs/Ge/GaAs double heterostructure is about 0.20 eV and 0.40 eV, respectively. Thus, the high-quality heterointerface and band offset for carrier confinement in MBE grown GaAs/Ge/GaAs heterostructures offer a promising candidate for Ge-based p-channel high-hole mobility quantum well field effect transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call