Abstract

A facile one-pot synthesis for the composite materials fabricated from conjugated polymer, poly(p-phenylenevinylene) (PPV), and monodispersed mesoporous silica spheres (MMSS) is demonstrated. Composite materials having superior photoluminescence properties are easily obtained using ethylene glycol as a reaction solvent in which PPV monomers are effectively exchanged with cationic surfactants in MMSS and subsequently polymerized in the solution. The method can prevent serious reduction of photoluminescence properties which occurs inevitably during thermal treatment (200°C) to polymerize PPV. In our method, the temperature of 100°C is enough to obtain the fully polymerized PPV, which is confirmed in Fourier transform infrared (FT-IR) spectrum. Reaction mechanism is verified through direct observation of its distinguishable color changes in the reaction solution and the measurement of surface electrical potential (ζ-potential). The obtained results strongly support that PPV chains are impregnated within mesopores in isolated condition, leading to high fluorescence quantum yield (nearly 80%). Compared to the conventional route, this method reduces multistep synthesis to one-step and eliminates high temperature and high vacuum process, leading to the facile eco-friendly procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.